Model vapor-deposited glasses: growth front and composition effects.
نویسندگان
چکیده
A growing body of experimental work indicates that physical vapor deposition provides an effective route for preparation of stable glasses, whose properties correspond in some cases to those expected for glasses that have been aged for thousands of years. In this work, model binary glasses are prepared in a process inspired by physical vapor deposition, in which particles are sequentially added to the free surface of a growing film in molecular dynamics simulations. The resulting glasses are shown to be more stable than those prepared by gradual cooling from the liquid phase. However, it is also shown that the composition of the resulting glass, which is difficult to control in physical vapor deposition simulations of thin films, plays a significant role on the physical characteristics of the material. That composition dependence leads to a re-evaluation of previous results from simulations of thinner films than those considered here, where the equivalent age of the corresponding glasses was overestimated. The simulations presented in this work, which correspond to films that are approximately 38 molecular diameters thick, also enable analysis of the devitrification mechanism by which vapor-deposited glasses transform into the supercooled liquid. Consistent with experiments, it is found that this mechanism consists of a mobility front that propagates from the free interface into the interior of the films. Eliminating surface mobility eliminates this route of transformation into the supercooled liquid.
منابع مشابه
In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry.
Vapor-deposited glasses of toluene and ethylbenzene have been characterized by in situ ac chip-nanocalorimetry. The high sensitivity of this method allows the detection of small changes in the heat capacity of nanogram size samples. We observe that vapor-deposited glasses have up to 4% lower heat capacities than the ordinary glass. The largest heat capacity decrease and the most kinetically sta...
متن کاملThermal stability of vapor-deposited stable glasses of an organic semiconductor.
Vapor-deposited organic glasses can show enhanced kinetic stability relative to liquid-cooled glasses. When such stable glasses of model glassformers are annealed above the glass transition temperature Tg, they lose their thermal stability and transform into the supercooled liquid via constant velocity propagating fronts. In this work, we show that vapor-deposited glasses of an organic semicond...
متن کاملTransformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy.
While ordinary glasses transform into supercooled liquid via a homogeneous bulk mechanism, thin film glasses of higher stability transform heterogeneously by a front propagating from the surface and/or the interfaces. In this work, we use quasi-adiabatic fast scanning nanocalorimetry to determine the heat capacity of thin glassy layers of indomethacin vapor-deposited in a broad temperature rang...
متن کاملVapor-deposited alcohol glasses reveal a wide range of kinetic stability.
In situ AC nanocalorimetry was used to characterize vapor-deposited glasses of six mono- and di-alcohol molecules. Benzyl alcohol glasses with high kinetic stability and decreased heat capacity were prepared. When annealed above the glass transition temperature Tg, transformation of these glasses into the supercooled liquid took 103.4 times longer than the supercooled liquid relaxation time (τα...
متن کاملLunar Mare Soils: Space weathering and the major effects of surfacecorrelated nanophase Fe
Lunar soils form the "ground truth" for calibration and modeling of reflectance spectra for quantitative remote sensing. The Lunar Soil Characterization Consortium, a group of lunar sample and remote sensing scientists, has undertaken the extensive task of characterization of lunar soils, with respect o their mineralogical and chemical makeup. This endeavor is aimed at deciphering the effects o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 139 14 شماره
صفحات -
تاریخ انتشار 2013